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We prove, under certain additional assumptions, that a Markov system has
dense span if and only if the zeros of the associated Chebyshev polynomials are
dense. :!,-' 1990 Academic Press, Inc.

l. INTRODUCTION

Our main purpose is to prove that, under certain reasonable restrictions,
a Markov system is dense (that is, it has dense span) if and only if the
zeros of the associated Chebyshev polynomials are dense. This is the
content of Theorem 1. This relationship has been conjectured by various
people including von Golitschek, Kroa, Saff, and the author [5]. Half of this,
namely that density of the system implies density of the zeros, is established
in [5] and is done in a more general setting than ours. For completeness
and simplicity we also offer an easy proof of this direction of the conjecture.
Theorem 2 relates the behavior of the zeros to the rate of approximation.
The final section of the paper examines the Muntz case in a little additional
detail.

The notations we need are the following; An infinite Markov system on
an interval [a, b] is a collection of continuous functions on [a, h]

(1.1 )

with the property that if an element of the real linear span of the first n,
i.e., an element of

(1.2 )
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vanishes at n points, then it vanishes identically. This latter condition is
called the Haar condition. Note that 1 is always an clement of our Markov
system.

Standard examples on [0, I] are

where the i., are distinct positive numbers and

{ I, ~: i.
I

' x: i.
2

' x: i.;' ..}

( 1.3)

(i.4 )

The fact that Lf? I' ... , gn} satisfies the Haar condition on [a, b] guaran
tees that unique best approximations exist in the uniform norm to a
continuous f on any closed subset Xc [a, h]. Furthermore, the best
approximation, p E H Il , is characterized by the alternation property that
there exist /1 + I points XiEX with X j < Xi\- , and with

where II' !I, denotes the sup norm on X. In fact, existence of unique best
approximations from lin is equivalent to H II satisfying the Haar condition.
This standard theory may be found in [2] or [4].

The additional assumption we will at times place on our Markov system
IS

Assumptio/1 1. We say that an infinite Markov system on [a, b],

satisfies Assumption 1 if each g i is differentiable on (a, h) and iff E Hnand
f' has n - 1 zeros on (a, h) thenf is identically constant.

Both of the systems (1.3) and (1.4) satisfy Assumption 1. So does any
Markov system, that contains I, where the derivatives also form a Markov
system. Note that the derivatives are not assumed to he continuous.

Assumption 1 is not as strong as it looks. In fact, any Markov system
(with gl := 1) that is composed of CC functions satisfies Assumption L
(See [4, p. 378].)

The (general) Chebyshev polynomial, T,n associated with the Markov
system on [a, hJ is the linear form

l ,,- I 1
Tn :=c g,,-' L cjg, '

k "I .

(1.6 )

where the C j are chosen so that 2:Z::' : C j g, is the best approximation to gil
from H" . 1 and where C is chosen so that II T,,'! I a,h 1= 1 and T,,(b) > O. This
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uniquely defines Tn" The properties Tn shares with the usual Chebyshev
polynomial (of degree n - 1) are that Tn has exactly n - 1 zeros on [a, b]
and that Tn oscillates between ± 1 exactly n times on [a, b]. Also the zeros
of Tn _ I interlace the zeros of Tn" The oscillation property is merely a result
of being a best approximation. The interlacing of zeros follows on
consideration of Tn ± Tn _ 1 which would have at least n zeros if the zeros
did not interlace. Finally, let

Zn:= {XE [a, b] IT,,(x) =0 for some n}

denote the set of zeros of the Chebyshev polynomials and let

M II := max !Xi-Xi_ll,
I :S;i~n

(1.7)

(1.8 )

where x 1< X2 < ... < x" I arc the zeros of Tn and where X o := a and
X n := b. (This is the maximum length of a zero free interval of Tn") From
the interlacing of the zeros of 1'" it is easy to deduce that

iff lim M" = O. (1.9)

We say that Z~, is dense in [a, b] if lim Mn = 0 (this is the appropriate
notion of denseness for a seq uence of sets).

When we say that a Markov system is dense we mean that the closed
linear span of .4t is dense in the supremum norm in the continuous
functions on [a, b]. Our principal result which we prove in the next
section now states that, subject to Assumption 1, .A is dense if and only
if Z At is dense in [a, b].

The theory of Markov systems may be accessed in [2, 4]. Papers that
examine the relationship between best uniform approximations and
locations of zeros or extrema of best approximations are [1, 5, 6].

2. DENSENESS

We proceed to show that denseness of zeros of the Chebyshev polyno
mials implies denseness of the Markov system. Our approach is to con
struct approximate step functions. In particular we will show, under the
assumption that Z At is dense, that given [c, d] c [a, b] and I; > 0 there
exists S(x)ESpan{gl' g2' ... } such that

IS(x)1 ~ f:

IS(x) -11 ~I;

S(x)'~O

XE [a, c]

XE Ed, b]

XE [c, d].

(2.1 )
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(2.2)

Given that such a class of S functions exists showing denseness of ./It' is
now easy and standard. The argument is roughly as follows. If jl were not
dense there would exist a non-trivial continuous linear functional, which
in this case by the Riesz representation theorem is a Borel measure Il,
vanishing on the closed span of .///. In particular

r
h

S(x)d fL(X)=O
'<J

for all S functions of the preceding type. This, however, implies that f1
vanishes identically.

Alternatively one may explicitly construct approximants as in Theorem 2.
The construction of S functions is the content of the next lemma.

LEMMA 1. Let AI be any Markov system on [a, b] that satisfies
Assumption I. Let [c, d] c [a, b]. Suppose Sn E HII is a best approximant
from Jln to f on [a, e] u Cd, h], where

{
a,

f(x):= 1,
XE. [a, c]

XE Cd, h].

Then

(A) Sn is monotone on [e, dl
(B) If ZIf is dense in [e, d] (that is, if the mesh of the zeros in [c, d]

tends to zero) thcnlim Iif--Sllllra.clvrd.bl=O.

(C) I!SII- fllra.cluldbJ ~ lOMII/(d-e).

Pr04 Since SII is a best approximant tofthere exist nt- 1 points where
the maximum error, [;11' occurs with alternating sign. Suppose m + 1 of
these points Xo, ... , Xm lie in [a, c] and n - m of these points Xm f- l' ... , XII lie
in Cd, h]. Then S~ has at least m-l zeros in (a, e) (one at each alternation
point in [a, e] except possibly at the endpoints a and c). Likewise S~ has
at least n - m - 2 zeros in (d, b). So S~ has at least n - 3 zeros in
(a, e)u(d, b). Note that this count excludes X m and Xm-i l' Thus S~ has at
most one more zero in (a, b) unless S~ vanishes (which is only possible for
11 = I). Now suppose S~ has a zero (with sign change) on (e, d). Then since
there is at most one zero of S~ in (e, d) it cannot be the case that both XIII := c

and X me1 :=d are alternation points with both S~(Ch~O and S;,(d),iO.
(Otherwise sign(SI/(c) - f(e» = sign(Sn(d) -- f(d) as a consideration of the
two eases shows.) But if X m # e or XIII ~ 1 of d or S~(e)= 0 or S;,(d) = 0 we
have accounted for ail the zeros of S;, by accounting for the one (possibly)
additional zero (either S~ vanishes at e or d or one of X m or x'" + 1 is an
interior alternation point where S;, vanishes). Thus S~ has no zeros in (e, d)
and (A) is proved.
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For part (B) we make the following observation. Let

Then

has at least m - I zeros on [a, e] and

D: := Dn+ I = I + en Tn -- S"

has at least 11 - m - 2 zeros on [d, b]. Thus D;, has at least n - 3 zeros on
[a, c] u Cd, b]. Suppose T", the nth Chebyshev polynomial on [a, h], has
at least 4 alternations on an interval [a, {3] c (e, d) and suppose that

Sn({3) - Sn(a) ~ G".

Then, because of the oscillation of T" on [a, If],

D Sn(fJ) + S,,(a)
n+ 2 T - [s _S,,(fJ) + S,,(afJ

En n" 2

has at least 3 zeros on [a, 13] and hence

V' = (V + S,,(fJ) + s,,(a))' ,
" n 2

has at least 2 zeros on [iX, 13], This, however, gives V~ a total of at least
n -- I zeros, which is impossible. In particular

Sn(fJ) - S,,(a) > En

on any interval [a, fJ] c (e, d) where Tn has at least 4 alternations.
However, for any fixed k for large n, Tn has at least k such intervals (since
the largest gap in the zeros of Tn on [e, d], M n, tends to zero by the
assumption on the density of the zeros). Thus with monotonicity

Sn(d) - Sn(c) ~ ke"

However, by construction

for large n.

S,,(d) - S,,(e) ~ I + 2cn

and Ln must tcnd to zero.
For part (C) observe that k, as above, may be chosen to be (d- e)/5M".

Also note that c" ~!. So comparison of thc two inequalities above yields
the result. I
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THEOREM l. (A) Suppose that .if is an infinite Markov system 011

[a, b] and suppose that Zff is not dense. Then .,It is not dense.

(B) Suppose that .it is all infinite Marko~' system on [a, hJ Irlzich
salLlfies Assumption 1, and suppose thaI Z If is dense. Then .it is dense.

Proof We offer the following simple proof of (A). Suppose [c, dJ
contains no zero of T". Consider the piecewise linear function F defined as
follows. Let c<x, <X2 <X3 <x4 <d, and let

{

0,

F(x) := 2,

-2,

x = a, C, h, d

x=x!,x.l

and be linear elsewhere. Suppose there exists p E H" with

Ip(x) - F(x)1 [a.hJ <~.

Then

p(x) - T,,(x)

(2.3 )

has n - 3 zeros on [a, c] u Cd, b] because 1'" has at least n - 1 extrema on
these intervals, but the four extrema of p on (e, d) guarantee three morc
zeros on this interval. Hence p - Tn has n zeros and vanishes identically.
This contradicts (2.3).

Part (B) is just a matter of coupling the argument that begins this
section with part C of the lemma. See also Theorem 2.

Notc that if "il is a Markov systcm on [a, h] then it is also a Markov
system on any subset. Thus, in particular, under Assumption 1, .If is dense
in C[:x, f1] where [ex, Ii] is any interval on which Zfl is dense.

THEORE~I 2. Let .It he a Markov syslem on [a, bJ thaI satisfies, for all
mEN, Assumption l. Let f E C[a, b] and leI p" he Ihe hesl approximation
10 ffi'om fI". Then

where 11'( is Ihe modulus of conlinuily off on [a, h] and D depends only on
a and h.
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Proof For simplicity suppose the interval in question is [0, 1]. The
idea is to approximately interpolate f by a combination of S functions at
the points Ijm, 2!m, ..., (m - 1 )jm. Let Pi be defined by

{

a.
Pi:= 1,

and let r,E lin be defined (as in Lemma 1) to be the best approximation
from Hn to Pi on [0, ilm] u [(i + 1 )Im, 1]. Let

III - I ( (i + 1) (i))U(X):=i~O .f ----;;; -I;, ri(x)+I(O).

Then

and from Lemma 1 (C) with (d - c) = 11m,

COROLLARY 1. In the notation of the above theorem. if

then

II Pn - III ra,h) = O( wr(n- 1/2)).

3. THE MtlNTZ CASE

We restrict our attention in this section to Markov systems

N._ {1 x;·\ x;,) }./Pt.- , , , ... , (3.1 )

where 1 < )'1 < i' 2 < ... < i' n --+ x. Then the classical theorem of Muntz
says that .4t is dense on [0, 1] exactly when

ex. 1
L -=- = x.

i--:: 1 1"1

(3.2 )
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In the case that j/ of (3.1) forms a non-dense Markov system we can say
considerably more than just that Z# is not dense. In fact we have the
following.

THEOREM 3. Suppose that vii, as in (3.1), is not dense. Then Z./( is a
countable set with second derived set Z';" = {I }. In particular Z", is nowhere
dense.

The proof of Theorem 3 rests on the following lemma which says that
the Markov inequality for non-dense Muntz system is uniformly bounded
except at 1.

LE~~fA 2. Suppose that ..;It, as in (3.1), is nol dense. For each <: > 0 there
exists rf (independent of n) such that iff E H" then

IIF(x)11 [0.1 e] ~ rf ilf(x)illo. IJ'

Proof In the case that .,11 is not dense the closure of Jt is contained
in the set of power series of the form

~,

" ax;"L I ~

i~O

i.o := I,

where the above series converges on [0, I). This is a result of Clarkson
and Erdos [3]. An examination of the proof shows that in this case the
following inequality holds: If

n -,1

f(x):= L UiXiiEH"
i- 0

then there exists C {l depending only on p > °such that

lail <Cp 11/llro.l1 (I +p)i.

Then
11 -I

and
" 1

1f'(x)I~Cpilfll[OlJ L i'i(l+pV'x;; 1

l~ 1

from which the lemma follows. I
Proof of Theorem 3. Let T" be the nth Chebyshev polynomial with

respect to JIt. For any fixed 1::, since T~ is uniformly bounded on [0, 1 - [;],
T" can have at most some fixed number, say k" of alternation points and
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hence zeros on [0, I - 1;]' Furthermore on [0, I - 1:] consecutive zeros of
Tn can be no closer than distance IJ" where IJ e is also independent of n.
This again follows from the uniformly bounded derivatives. Since the zeros
of Tn interlace, the smallest cluster point in Z J( is the limit of the decreasing
sequence of the smallest zeros of each Tn. The second smallest cluster point
is the limit of the sequence of second smallest zeros, etc. There are at most
k e such cluster points on [0, 1 - 1;]' I

A similar result holds for Markov systems of the form {lj(x + :x;)}"(:, I

where ~i t°and it holds for essentially the same reasons as Theorem 3
holds. Thus in this case and the Muntz case either Z.# is dense or it is
really quite thin and this in some way renects the fact that either .A is
dense or it is really quite sparse. (Is this a general phenomenon? Does
there exist a Markov system with Z.# neither dense nor nowhere dense?)
Furthermore, these results relate intimately to the uniform boundedness 01
the corresponding Markov's inequality. The exact relationship between
Markov's inequality and denseness also appears to warrant further study.

We finish with an observation on external points of best approximations.

THEOREM 4. Suppose vii is a non-dense Muntz system, and suppose f is
not in the closure of the linear span of vii. Then the set of alternation points
of the best approximations to f from each H n form a set ,r:1", where ~({ is
nowhere dense and ~;( = {I}.

The proof is identical to that of Theorem 3; the functions

f - Pn'

where Pn is the best approximant to f from Hn, play the role of the Tn'
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